Code: 20EC2702B

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

SATELLITE COMMUNICATIONS (Common for ALL BRANCHES)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.	
					Marks	
		UNIT-I				
1	a)	Discuss the future trends and advanced	L2	CO1	7 M	
		concepts relating to the satellite				
		communication.				
	b)	What is Satellite? Define Satellite	L2	CO1	7 M	
		Communication. Describe briefly the main				
		advantages offered by satellite				
		communication.				
OR						
2	a)	Outline the history of satellite	L2	CO1	7 M	
		communication.				
	b)	List and explain the frequency band	L2	CO1	7 M	
		allocations used for satellite services.				
1		·	•			

Max. Marks: 70

		UNIT-II					
3	a)	Identify and explain different launchers and	L4	CO2	7 M		
		launch vehicles.					
	b)	What are look angles? Develop the	L3	CO2	7 M		
		expressions for elevation angle.					
OR							
4	a)	L	L3	CO2	7 M		
		earth has an apogee of 39,152km and a					
		perigee of 500 km. What is the orbital					
		period of this satellite? Assume radius of					
		earth is 6378.137 km and Kepler's constant					
	•	has the value $3.98 \times 10^5 \text{ km}^3/\text{s}^2$.					
	b)	l	L2	CO2	7 M		
		perturbations.					
5	a)	Write notes on:	L2	CO3	8 M		
		(i) Space qualification					
		(ii) Satellite antenna equipment reliability.					
	b)	What are the various subsystems in the	L2	CO3	6 M		
		satellite? Explain the power system.					
	1	OR		1 1			
6	a)	Explain how altitude control is established	L2	CO3	7 M		
1		through various satellite stabilization					
		e					
		techniques.					
	b)	techniques. Mention the different antennas used on	L2	CO3	7 M		
	b)	techniques. Mention the different antennas used on satellites. Explain with the help of typical	L2	CO3	7 M		
	b)	techniques. Mention the different antennas used on	L2	CO3	7 M		

	1	UNIT-IV			
7	a)	Consider the receiver side of an earth station. The antenna gain is 65 dB and it noise contribution in 60 K. The wave guide Ions is 0.5 dB. Find the equivalent noise temperature of LNA assuming that the noise contribution by the down converter is negligible and earth station G/T is 40 dBK.	L4	CO2	7 M
	b)	(T _o =300K). From system noise temperature calculation, prove that C/N ratio is directly proportional to G/T ratio.	L4	CO2	7 M
		OR			
8	a)	A multiple carrier satellite circuit operate in the 6/4GHz band with the following characteristic. Uplink: saturation flux density -67.5dBW/m ² , input backoff 11dB; satellite G/T -11.6dB/K. Downlink: satellite saturation EIRP 26.6dB/K; output backoff 6dB; free-space loss 196.7dB; earth station G/T 40.7dB/K. For this example, the other losses may be ignored. Calculate the carrier-to-noise density ratios for both links and the combined value.	L4	CO2	7 M
	b)	Explain the design procedure of satellite communication link.	L2	CO2	7 M

	UNIT-V						
9	a)	Explain Satellite switched TDMA with onboard processing. Brief about DAMA.	L2	CO4	8 M		
	b)		L3	CO4	6 M		
		mechanism for CDMA techniques.					
		OR					
10	a)	Describe the ways in which demand	L2	CO4	8 M		
		assignment may be carried out in an FDMA					
		network.					
	b)	In a TDMA network the reference burst and	L3	CO4	6 M		
		the preamble each require 560 bits, and the					
		nominal guard interval between bursts is					
		equivalent to 120 bits. Given that there are					
		eight traffic bursts and one reference burst					
		per frame and the total frame length is					
		equivalent to 40,800 bits, calculate the					
		frame efficiency.					